Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 667: 338-349, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38640653

RESUMO

Recently, membrane devices and processes have been applied for the separation and concentration of subcellular components such as extracellular vesicles (EVs), which play a diagnostic and therapeutic role in many pathological conditions. However, the separation and isolation of specific EV populations from other components found in biological fluids is still challenging. Here, we developed a peptide-functionalized hollow fiber (HF) membrane module to achieve the separation and enrichment of highly pure EVs derived from the culture media of human cardiac progenitor cells. The strategy is based on the functionalization of PSf HF membrane module with BPt, a peptide sequence able to bind nanovesicles characterized by highly curved membranes. HF membranes were modified by a nanometric coating with a copoly azide polymer to limit non-specific interactions and to enable the conjugation with peptide ligand by click chemistry reaction. The BPt-functionalized module was integrated into a TFF process to facilitate the design, rationalization, and optimization of EV isolation. This integration combined size-based transport of species with specific membrane sensing ligands. The TFF integrated BPt-functionalized membrane module demonstrated the ability to selectively capture EVs with diameter < 200 nm into the lumen of fibers while effectively removing contaminants such as albumin. The captured and released EVs contain the common markers including CD63, CD81, CD9 and syntenin-1. Moreover, they maintained a round shape morphology and structural integrity highlighting that this approach enables EVs concentration and purification with low shear stress. Additionally, it achieved the removal of contaminants such as albumin with high reliability and reproducibility, reaching a removal of 93%.

2.
J Extracell Biol ; 3(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38405579

RESUMO

The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.

3.
Exp Neurol ; 374: 114716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331161

RESUMO

SOD1 gene is associated with progressive motor neuron degeneration in the familiar forms of amyotrophic lateral sclerosis. Although studies on mutant human SOD1 transgenic rodent models have provided important insights into disease pathogenesis, they have not led to the discovery of early biomarkers or effective therapies in human disease. The recent generation of a transgenic swine model expressing the human pathological hSOD1G93A gene, which recapitulates the course of human disease, represents an interesting tool for the identification of early disease mechanisms and diagnostic biomarkers. Here, we analyze the activation state of CNS cells in transgenic pigs during the disease course and investigate whether changes in neuronal and glial cell activation state can be reflected by the amount of extracellular vesicles they release in biological fluids. To assess the activation state of neural cells, we performed a biochemical characterization of neurons and glial cells in the spinal cords of hSOD1G93A pigs during the disease course. Quantification of EVs of CNS cell origin was performed in cerebrospinal fluid and plasma of transgenic pigs at different disease stages by Western blot and peptide microarray analyses. We report an early activation of oligodendrocytes in hSOD1G93A transgenic tissue followed by astrocyte and microglia activation, especially in animals with motor symptoms. At late asymptomatic stage, EV production from astrocytes and microglia is increased in the cerebrospinal fluid, but not in the plasma, of transgenic pigs reflecting donor cell activation in the spinal cord. Estimation of EV production by biochemical analyses is corroborated by direct quantification of neuron- and microglia-derived EVs in the cerebrospinal fluid by a Membrane Sensing Peptide enabled on-chip analysis that provides fast results and low sample consumption. Collectively, our data indicate that alteration in astrocytic EV production precedes the onset of disease symptoms in the hSODG93A swine model, mirroring donor cell activation in the spinal cord, and suggest that EV measurements from the cells first activated in the ALS pig model, i.e. OPCs, may further improve early disease detection.


Assuntos
Esclerose Amiotrófica Lateral , Vesículas Extracelulares , Camundongos , Animais , Humanos , Suínos , Superóxido Dismutase-1/genética , Neurônios Motores/metabolismo , Superóxido Dismutase/genética , Camundongos Transgênicos , Esclerose Amiotrófica Lateral/patologia , Medula Espinal/patologia , Neuroglia/patologia , Biomarcadores/metabolismo , Peptídeos/metabolismo , Modelos Animais de Doenças
4.
Cell Mol Life Sci ; 81(1): 68, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289472

RESUMO

Aminopeptidase N/CD13, a membrane-bound enzyme upregulated in tumor vasculature and involved in angiogenesis, can be used as a receptor for the targeted delivery of drugs to tumors through ligand-directed targeting approaches. We describe a novel peptide ligand (VGCARRYCS, called "G4") that recognizes CD13 with high affinity and selectivity. Enzymological and computational studies showed that G4 is a competitive inhibitor that binds to the catalytic pocket of CD13 through its N-terminal region. Fusing the peptide C-terminus to tumor necrosis factor-alpha (TNF) or coupling it to a biotin/avidin complex causes loss of binding and inhibitory activity against different forms of CD13, including natural or recombinant ectoenzyme and a membrane form expressed by HL60 promyelocytic leukemia cells (likely due to steric hindrance), but not binding to a membrane form of CD13 expressed by endothelial cells (ECs). Furthermore, G4-TNF systemically administered to tumor-bearing mice exerted anticancer effects through a CD13-targeting mechanism, indicating the presence of a CD13 form in tumor vessels with an accessible binding site. Biochemical studies showed that most CD13 molecules expressed on the surface of ECs are catalytically inactive. Other functional assays showed that these molecules can promote endothelial cell adhesion to plates coated with G4-avidin complexes, suggesting that the endothelial form of CD13 can exert catalytically independent biological functions. In conclusion, ECs express a catalytically inactive form of CD13 characterized by an accessible conformation that can be selectively targeted by G4-protein conjugates. This form of CD13 may represent a specific target receptor for ligand-directed targeted delivery of therapeutics to tumors.


Assuntos
Antígenos CD13 , Células Endoteliais , Leucemia Promielocítica Aguda , Animais , Camundongos , Antígenos CD13/antagonistas & inibidores , Ligantes
5.
CrystEngComm ; 25(32): 4503-4510, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014394

RESUMO

Self-assembling peptides are of huge interest for biological, medical and nanotechnological applications. The enormous chemical variety that is available from the 20 amino acids offers potentially unlimited peptide sequences, but it is currently an issue to predict their supramolecular behavior in a reliable and cheap way. Herein we report a computational method to screen and forecast the aqueous self-assembly propensity of amyloidogenic pentapeptides. This method was found also as an interesting tool to predict peptide crystallinity, which may be of interest for the development of peptide based drugs.

6.
J Extracell Vesicles ; 12(10): e12349, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855042

RESUMO

The widely overlapping physicochemical properties of lipoproteins (LPs) and extracellular vesicles (EVs) represents one of the main obstacles for the isolation and characterization of these pervasive biogenic lipid nanoparticles. We herein present the application of an atomic force microscopy (AFM)-based quantitative morphometry assay to the rapid nanomechanical screening of mixed LPs and EVs samples. The method can determine the diameter and the mechanical stiffness of hundreds of individual nanometric objects within few hours. The obtained diameters are in quantitative accord with those measured via cryo-electron microscopy (cryo-EM); the assignment of specific nanomechanical readout to each object enables the simultaneous discrimination of co-isolated EVs and LPs even if they have overlapping size distributions. EVs and all classes of LPs are shown to be characterised by specific combinations of diameter and stiffness, thus making it possible to estimate their relative abundance in EV/LP mixed samples in terms of stoichiometric ratio, surface area and volume. As a side finding, we show how the mechanical behaviour of specific LP classes is correlated to distinctive structural features revealed by cryo-EM. The described approach is label-free, single-step and relatively quick to perform. Importantly, it can be used to analyse samples which prove very challenging to assess with several established techniques due to ensemble-averaging, low sensibility to small particles, or both, thus providing a very useful tool for quickly assessing the purity of EV/LP isolates including plasma- and serum-derived preparations.


Assuntos
Vesículas Extracelulares , Microscopia Crioeletrônica , Vesículas Extracelulares/química , Microscopia de Força Atômica/métodos , Lipopolissacarídeos , Lipoproteínas/análise
7.
Biology (Basel) ; 12(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37759632

RESUMO

The relative contribution of small (sEVs) and large extracellular vesicles (lEVs) to the total plasma procoagulant potential is not yet well defined. Thus, we compared total and TFpos-sEVs and -lEVs isolated from healthy subjects and COVID-19 patients during the acute phase of the infection and after symptom remission in terms of (1) vesicle enumeration using nanoparticle tracking assay, imaging flow cytometry, and TF immunofluorescence localization in a single-vesicle analysis using microarrays; (2) cellular origin; and (3) TF-dependent Xa generation capacity, as well as assessing the contribution of the TF inhibitor, TFPI. In healthy subjects, the plasma concentration of CD9/CD63/CD81pos sEVs was 30 times greater than that of calceinpos lEVs, and both were mainly released by platelets. Compared to lEVs, the levels of TFpos-sEVs were 2-fold higher. The TF-dependent Xa generation capacity of lEVs was three times greater than that of sEVs, with the latter being hindered by TFPI. Compared to HSs, the amounts of total and TFpos-sEVs and -lEVs were significantly greater in acute COVID-19 patients, which reverted to the physiological values at the 6-month follow-up. Interestingly, the FXa generation of lEVs only significantly increased during acute infection, with that of sEV being similar to that of HSs. Thus, in both healthy subjects and COVID-19 patients, the TF-dependent procoagulant potential is mostly sustained by large vesicles.

8.
J Nanobiotechnology ; 21(1): 301, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635243

RESUMO

BACKGROUND: Early detection and removal of bladder cancer in patients is crucial to prevent tumor recurrence and progression. Because current imaging techniques may fail to detect small lesions of in situ carcinomas, patients with bladder cancer often relapse after initial diagnosis, thereby requiring frequent follow-up and treatments. RESULTS: In an attempt to obtain a sensitive and high-resolution imaging modality for bladder cancer, we have developed a photoacoustic imaging approach based on the use of PEGylated gold nanorods (GNRs) as a contrast agent, functionalized with the peptide cyclic [CphgisoDGRG] (Iso4), a selective ligand of α5ß1 integrin expressed by bladder cancer cells. This product (called GNRs@PEG-Iso4) was produced by a simple two-step procedure based on GNRs activation with lipoic acid-polyethyleneglycol(PEG-5KDa)-maleimide and functionalization with peptide Iso4. Biochemical and biological studies showed that GNRs@PEG-Iso4 can efficiently recognize purified integrin α5ß1 and α5ß1-positive bladder cancer cells. GNRs@PEG-Iso4 was stable and did not aggregate in urine or in 5% sodium chloride, or after freeze/thaw cycles or prolonged exposure to 55 °C, and, even more importantly, do not settle after instillation into the bladder. Intravesical instillation of GNRs@PEG-Iso4 into mice bearing orthotopic MB49-Luc bladder tumors, followed by photoacoustic imaging, efficiently detected small cancer lesions. The binding to tumor lesions was competed by a neutralizing anti-α5ß1 integrin antibody; furthermore, no binding was observed to healthy bladders (α5ß1-negative), pointing to a specific targeting mechanism. CONCLUSION: GNRs@PEG-Iso4 represents a simple and robust contrast agent for photoacoustic imaging and diagnosis of small bladder cancer lesions.


Assuntos
Nanotubos , Técnicas Fotoacústicas , Neoplasias da Bexiga Urinária , Animais , Camundongos , Meios de Contraste , Integrina alfa5beta1 , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Ouro
9.
Front Bioeng Biotechnol ; 11: 1238898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636002

RESUMO

Introduction: One main limitation in biomarker studies using EVs is the lack of a suitable isolation method rendering high yield and purity samples in a quick and easily standardized procedure. Here we report an affinity isolation method with a membrane-sensing peptide (MSP) derived from bradykinin. Methods: We designed a protocol based on agarose beads carrying cation chelates to specifically bind to the 6His-tagged membrane-sensing peptide. This approach presents several advantages: 1) cation-carrying agaroses are widely used and standardized for His-tagged protein isolation, 2) the affinity protocol can be performed in small volumes, feasible and manageable for clinical routine and 3) elution with imidazole or EDTA allows a gentle and easy recovery without EV damage, facilitating subsequent characterization and functional analyses. Results: The optimized final procedure incubates 0.5 mg of peptide for 10 min with 10 µL of Long-arm Cobalt agarose before an overnight incubation with concentrated cell conditioned medium. EV downstream analyses can be directly performed on the agarose beads adding lysis or nucleic-acid extraction buffers, or gently eluted with imidazole or EDTA, rendering a fully competent EV preparation. Discussion: This new isolation methodology is based on the recognition of general membrane characteristics independent of surface markers. It is thus unbiased and can be used in any species EV sample, even in samples from animal or plant species against which no suitable antibodies exist. Being an affinity method, the sample handling protocol is very simple, less time-consuming, does not require specialized equipment and can be easily introduced in a clinical automated routine. We demonstrated the high purity and yield of the method in comparison with other commercially available kits. This method can also be scale up or down, with the possibility of analyzing very low amounts of sample, and it is compatible with any downstream analyses thanks to the gentle elution procedure.

10.
ChemMedChem ; 18(17): e202300236, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389978

RESUMO

Cell-penetrating peptides (CPPs) encompass a class of peptides that possess the remarkable ability to cross cell membranes and deliver various types of cargoes, including drugs, nucleic acids, and proteins, into cells. For this reason, CPPs are largely investigated in drug delivery applications in the context of many diseases, such as cancer, diabetes, and genetic disorders. While sharing this functionality and some common structural features, such as a high content of positively charged amino acids, CPPs represent an extremely diverse group of elements, which can differentiate under many aspects. In this review, we summarize the most common characteristics of CPPs, introduce their main distinctive features, mechanistic aspects that drive their function, and outline the most widely used techniques for their structural and functional studies. We highlight current gaps and future perspectives in this field, which have the potential to significantly impact the future field of drug delivery and therapeutics.

11.
Antibiotics (Basel) ; 12(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36978339

RESUMO

Antimicrobial resistance is a major public health concern worldwide. Albeit to a lesser extent than bacteria, fungi are also becoming increasingly resistant to antifungal drugs. Moreover, due to the small number of antifungal classes, therapy options are limited, complicating the clinical management of mycoses. In this view, antimicrobial peptides (AMPs) are a potential alternative to conventional drugs. Among these, Proline-rich antimicrobial peptides (PrAMPs), almost exclusively of animal origins, are of particular interest due to their peculiar mode of action. In this study, a search for new arginine- and proline-rich peptides from plants has been carried out with a bioinformatic approach by sequence alignment and antimicrobial prediction tools. Two peptide candidates were tested against planktonic cells and biofilms of Candida albicans and Candida glabrata strains, including resistant isolates. These peptides showed similar potent activity, with half-maximal effective concentration values in the micromolar range. In addition, some structural and functional features, revealing peculiar mechanistic behaviors, were investigated.

12.
Int J Biol Sci ; 19(1): 156-166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36594095

RESUMO

Rationale: The αvß6- and αvß8-integrins, two cell-adhesion receptors upregulated in many tumors and involved in the activation of the latency associated peptide (LAP)/TGFß complex, represent potential targets for tumor imaging and therapy. We investigated the tumor-homing properties of a chromogranin A-derived peptide containing an RGDL motif followed by a chemically stapled alpha-helix (called "5a"), which selectively recognizes the LAP/TGFß complex-binding site of αvß6 and αvß8. Methods: Peptide 5a was labeled with IRDye 800CW (a near-infrared fluorescent dye) or with 18F-NOTA (a label for positron emission tomography (PET)); the integrin-binding properties of free peptide and conjugates were then investigated using purified αvß6/αvß8 integrins and various αvß6/αvß8 single - or double-positive cancer cells; tumor-homing, biodistribution and imaging properties of the conjugates were investigated in subcutaneous and orthotopic αvß6-positive carcinomas of the pancreas, and in mice bearing subcutaneous αvß8-positive prostate tumors. Results: In vitro studies showed that 5a can bind both integrins with high affinity and inhibits cell-mediated TGFß activation. The 5a-IRDye and 5a-NOTA conjugates could bind purified αvß6/αvß8 integrins with no loss of affinity compared to free peptide, and selectively recognized various αvß6/αvß8 single- or double-positive cancer cells, including cells from pancreatic carcinoma, melanoma, oral mucosa, bladder and prostate cancer. In vivo static and dynamic optical near-infrared and PET/CT imaging and biodistribution studies, performed in mice with subcutaneous and orthotopic αvß6-positive carcinomas of the pancreas, showed high target-specific uptake of fluorescence- and radio-labeled peptide by tumors and low non-specific uptake in other organs and tissues, except for excretory organs. Significant target-specific uptake of fluorescence-labeled peptide was also observed in mice bearing αvß8-positive prostate tumors. Conclusions: The results indicate that 5a can home to αvß6- and/or αvß8-positive tumors, suggesting that this peptide can be exploited as a ligand for delivering imaging or anticancer agents to αvß6/αvß8 single- or double-positive tumors, or as a tumor-homing inhibitor of these TGFß activators.


Assuntos
Carcinoma , Neoplasias Pancreáticas , Neoplasias da Próstata , Masculino , Animais , Camundongos , Humanos , Cromogranina A/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual , Peptídeos/química , Integrinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
13.
Small ; 19(12): e2206712, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650930

RESUMO

Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different types of strategies and fuels, but achieving finite 3D structures with a controlled morphology through this assembly mode is still rare. Here, a spherical peptide-gold superstructure (PAuSS) is used as a template to control the out-of-equilibrium self-assembly of Au NPs, obtaining a transient 3D-branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate (SDS). The BAuNS dismantles upon SDS concentration gradient equilibration over time in the sample solution, leading to NPs disassembly and regression to PAuSS. Notably, BAuNS assembly and disassembly promotes temporary interparticle plasmonic coupling, leading to reversible and tunable changes of their plasmonic properties, a highly desirable behavior in the development of optoelectronic nanodevices.

14.
Methods Mol Biol ; 2578: 53-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152280

RESUMO

Recent advances in biosensing analytical platforms have brought relevant outcomes for novel diagnostic and therapy-oriented applications. In this context, 3D droplet microarrays, where hydrogels are used as matrices to stably entrap biomolecules onto analytical surfaces, potentially provide relevant advantages over conventional 2D assays, such as increased loading capacity, lower nonspecific binding, and enhanced signal-to-noise ratio. Here, we describe a hybrid hydrogel composed of a self-assembling peptide and commercial agarose (AG) as a suitable matrix for 3D microarray bioassays. The hybrid hydrogel is printable and self-adhesive and allows analyte diffusion. As a showcase example, we describe its application in a diagnostic immunoassay for the detection of SARS-CoV-2 infection.


Assuntos
COVID-19 , Hidrogéis , COVID-19/diagnóstico , Humanos , Hidrogéis/química , Imunoensaio , Peptídeos/química , Cimentos de Resina , SARS-CoV-2 , Sefarose
15.
Methods Mol Biol ; 2578: 209-217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152290

RESUMO

In SARS-CoV-2 pandemic scenario, the identification of rapid methods to detect antibodies against coronavirus has been a wide and urgent issue. Epitope mapping on peptide microarrays is a rapid way to identify sequences with a high immunoreactivity. The process begins with a proteome-wide screening, based on immune affinity; the use of a high-density microarray is followed by a validation phase, where a restricted panel of probes is tested using peptide microarrays; peptide sequences are immobilized through a click-based strategy.COVID-19-positive sera are tested and immuno-domains regions are identified on SARS-CoV-2 spike (S), nucleocapsid (N) protein, and Orf1ab polyprotein. An epitope on N protein (region 155-171) provided good diagnostic performance in discriminating COVID-19-positive vs. healthy individuals. Using this sequence, 92% sensitivity and 100% specificity are reached for IgG detection in COVID-19 samples, and no cross-reactivity with common cold coronaviruses is detected. Overall, epitope 155-171 from N protein represents a promising candidate for further development and rapid implementation in serological tests.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , Mapeamento de Epitopos , Epitopos , Humanos , Imunidade , Imunoglobulina G , Poliproteínas , Proteoma , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
16.
Methods Mol Biol ; 2578: 249-257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152293

RESUMO

Analytical platforms for small extracellular vesicle (sEV) high-throughput analysis are highly desirable. These bionanoparticles present fairly distinctive lipid membrane features including high curvature, lipid-packing defects, and a relative abundance in lipids. sEV membrane could be considered as a "universal" marker, complementary or alternative to traditional surface-associated proteins. Here, we describe the use of membrane-sensing peptides as a new, highly efficient ligand to directly integrate sEV capturing and analysis on a microarray platform.


Assuntos
Vesículas Extracelulares , Peptídeos , Vesículas Extracelulares/metabolismo , Ligantes , Lipídeos , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Peptídeos/metabolismo
17.
iScience ; 25(10): 105042, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36124235

RESUMO

Calcineurin (CN) inhibitors currently used to avoid transplant rejection block the activation of adaptive immune responses but also prevent the development of tolerance toward the graft, by directly inhibiting T cells. CN, through the transcription factors of the NFAT family, plays an important role also in the differentiation dendritic cells (DCs), the main cells responsible for the activation of T lymphocytes. Therefore, we hypothesized that the inhibition of CN only in DCs and not in T cells could be sufficient to prevent T cell responses, while allowing for the development of tolerance. Here, we show that inhibition of CN/NFAT pathway in innate myeloid cells, using a new nanoconjugate capable of selectively targeting phagocytes in vivo, protects against graft rejection and induces a longer graft acceptance compared to common CN inhibitors. We propose a new generation of nanoparticles-based selective immune suppressive agents for a better control of transplant acceptance.

18.
Microbiol Res ; 263: 127152, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35944357

RESUMO

Antibiotic resistance is a serious health and social problem that will have a substantial impact in the coming years on the world health and economy. Thus, the increasing demand for innovative antibiotics, has prompted many researchers in the medical, microbiological, and biochemical fields to exploit the properties of antimicrobial peptides (AMPs). When properly used, designed, and conveyed, AMPs can really represent a valid alternative to conventional drugs especially in situations that are particularly difficult to treat such as chronic infections found in Cystic Fibrosis (CF) patients. In this review we focused on the applications of AMPs in the specific field of CF, illustrating different types of peptides from natural, naturally modified, synthetic as well as the different strategies used to overcome the barriers, and the physiological conditions in which AMPs must operate.


Assuntos
Infecções Bacterianas , Fibrose Cística , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos Antimicrobianos , Infecções Bacterianas/tratamento farmacológico , Fibrose Cística/tratamento farmacológico , Resistência Microbiana a Medicamentos , Humanos , Testes de Sensibilidade Microbiana
19.
Molecules ; 27(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889487

RESUMO

Breast cancer is one of the most diffuse cancers in the world and despite the availability of the different drugs employed against it, the need for new and particularly more specific molecules is ever growing. In this framework, natural products are increasingly assuming an important role as new anticancer drugs. Aloe-emodin (AE) is one of the best characterized molecules in this field. The functionalization of bioactive natural products with selected peptide sequences to enhance their bioavailability and specificity of action is a powerful and promising strategy. In this study, we analyzed the cell specificity, cell viability effects, intracellular distribution, and immune cell response of a new peptide conjugate of Aloe-emodin in SKBR3 and A549 cell lines by means of viability tests, flow cytometry, and confocal microscopy. The conjugate proved to be more effective at reducing cell viability than AE in both cell lines. Furthermore, the results showed that it was mainly internalized within the SKBR3 cells, showing a nuclear localization, while A459 cells displayed mainly a cytoplasmic distribution. A preserving effect of the conjugate on NKs' cell function was also observed. The designed conjugate showed a promising specific activity towards HER2-expressing cells coupled with an enhanced water solubility and a higher cytotoxicity; thus, the resulting proof-of-concept molecule can be further improved as an anticancer compound.


Assuntos
Aloe , Antineoplásicos , Produtos Biológicos , Neoplasias da Mama , Emodina , Aloe/química , Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Apoptose , Produtos Biológicos/farmacologia , Emodina/farmacologia , Feminino , Humanos , Peptídeos/farmacologia
20.
Small ; 18(32): e2200807, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35723172

RESUMO

Bromination is herein exploited to promote the emergence of elastic behavior in a short peptide-SDSYGAP-derived from resilin, a rubber-like protein exerting its role in the jumping and flight systems of insects. Elastic and resilient hydrogels are obtained, which also show self-healing behavior, thanks to the promoted non-covalent interactions that limit deformations and contribute to the structural recovery of the peptide-based hydrogel. In particular, halogen bonds may stabilize the ß-sheet organization working as non-covalent cross-links between nearby peptide strands. Importantly, the unmodified peptide (i.e., wild type) does not show such properties. Thus, SDSY(3,5-Br)GAP is a novel minimalist peptide elastomer.


Assuntos
Drosophila melanogaster , Halogenação , Animais , Drosophila melanogaster/metabolismo , Elasticidade , Hidrogéis , Proteínas de Insetos , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...